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Abstract. Torsional oscillations of the Earth’s liquid metallic outer core are investigated

by dividing the core into twenty imaginary equi-volume  annuli  coaxial with the axis of

rotation of the Earth and determining temporal fluctuations in the axial component of

angular momentum of each annulus under the assumption of iso-rotation on cylindrical

surfaces. With the available velocity fields just below the core-mantle interface as derived

from geomagnetic secular variation observations, it is possible to investigate core angular

momentum (CAM) over fifteen decades from 1840– 1990. This interval is much shorter

than the expected periods of non-axisymmetric  rnagnetohydrody  namic  (MHD)

oscillations of the core—one class of shear waves at sub-seismic frequencies- but it

does exceed that of the expected period of axisymrnetric MHD torsional oscillations. The

dominant period seen in the data is about 65 years. If this can be interpreted as being that

of the gravest mode of MHD torsional oscillation, then the implied value of BP (the

average strength of the non-axial component of the poloidal part of the geomagnetic

field) is about 2 x 10-4T (2 gauss), rough]y half the average strength of the (poloidal)

geomagnetic field in the lower reaches of the mantle and very much less than the likely

average strength of the toroidal  magnetic f]eld in the core, which may be M high M 10-IT

( 102 gauss). CAM fluctuations are most pmnounccd in [he mid! :ititudes  and are generally
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out of phase with those occurring in cquatoriat regions. They arc roughly in phase with

dccadal  length-of-day (LOD) fluctuations, especially after about 1870, with the dominant

variability period of -65 years. The largest positive correlations (0.8 when data before

1867.5 are excluded) are observed in the mid-latitudes with a maximum :it zero lag and

with secondary peaks at 67 yrs and at –64 years, again implying a -65 year mode.

Propagation of CAM anomalies from the equatorial to polar regions is evident in both the

time-latitude dependence of CAM and its latitudinal correlation with length of day

fluctuations.

Introduction

Motions in the Earth’s liquid metallic outer core produce the main geomagnetic field by

self-exciting magnetohydrodynamic  dynamo action (1 ). Driven by buoyancy forces due

to the action of density inhomogeneities associated with differential heating and cooling,

core motions are strongly influenced not only by Coriolis  forces due to the Earth’s

rotation and the geometry of the bounding surfaces but also by Lorentz forces due to the

presence of electric currents and magnetic fields within the core. The main aim of the

present study is to shed further light on the dynamical processes within the Earth’s deep

interior that give rise to decadal  fluctuations in the rate of rotation of the solid Earth, and

involve angular momentum transfer not only between the core and the overlying mantle

but also between different parts of the core.

Considerations of fluctuations in angular momentum within a fluid system and of

the exchange of angular momentum bctwccn the fluid system and the regions with which

it is in contact are of fundamental importance in realistic dynamical studies. as

exemplified by investigations of planetary-scale motions in atmospheres and oceans (2–

6). Strong indirect evidence of angular momentum cxcharrge  between the core and the

overlying mantle stems from general quantit:~tive considerations made in the first realistic

attempts to interpret determinations of Icngth of clay (LOD) fluctuations on dccadal time



,. .

JIIIIC 27. I’)IJ7
4 ()() I’hl

Kal CS, for th~ LOD IS an inverse n]~asl]r~  Of ilngtililr fllclIllCIltLllll  Of the solid Eilr[h (M.$).

Indeed,  it hi]s long been generally accepted that irregular LOD [~ UCILlil[lOnS  on such tirnc

scales must be due largely to core motions (see e.g. (7, 8)).

It is because of the high density of the core, more than 104 times that of the

atmosphere, that these two fluid regions of the. EM-th (the core and atmosphere) are able to

produce effects on the rotation of the solid Earth that are generally comparable in

magnitude. The amp]itude of seasonal atmospheric variations, for example, are about a

millisecond (ins), while decadal fluctuations can be as large as 5 ms. The core acts on

longer time scales than the atmosphere, for the speed of core motions is typically 10-0

times that of atmospheric winds; one week for the atmosphere thus translates into about a

century for the core, so the 150 years of geomagnetic data available for the present study

can provide no more than a glimpse of what might be happening in the core. In contrast,

work on the interpretation of fluctuations in the Earth’s rotation on shorter sub-decadal

timescales in terms of dynamical processes in the atmosphere (and ocean) (2–6) is more

advanced owing, in large part, to the abundant meteorological data, which are well-

sarnpled in time and relatively well-sampled in space. The characteristic periods of the

relevant phenomena studied are generally much shorter than the data span, and data

analyses are correspondingly robust. It is possible to investigate angular momentum

transfer between different parts of the atmosphere, thereby elucidating processes of

central importance in theories of the general circulation of the atmosphere and its

interaction with the underlying planet. It is unlikely that detailed magnetic observations

from much earlier times can be obtained from existing records, so the best use has to be

made of the data sets currently available.

Angular momentum budget

Denote by Ms the axial component of the ilngLllJr’  nmmentum c)f the solid Ear(h and by M”

that of the liquid core. On clccadal time scales the equation
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dM,y _ dM.— (1)
d t dt

expresses angular momentum conservation to better than 10% (the residua!  being largely

associated with atmospheric and oceanic effects). M is given by the axial component of

9$ p(r, f)r x [Q Xr + u]dT (2)

where p(r, t) is the mass density at a general point P in a frame of reference with its

origin at the Earth’s center of mass and which rotates with the mantle with angular

velocity Q relative to an inertial frame and u is the Eulerian relative flow velocity, and d~

is an element of volume of the liquid core, over the whole of which the volume integral is

taken.

Thus, to conserve the angular momentum of the whole system, any fluctuations in

the total angular momentum of the liquid outer core must be accompanied by fluctuations

in the angular momentum not only of the overlying solid mantle but also of the

underlying solid inner core which, being a good electrical conductor, should be tightly

coupled by Lorentz  forces to the liquid core. However, in comparison with the liquid

core, the volume of the solid inner core is small, no more than that of one of the twenty

equi-volume annuli  into which we divide the core in the present study (see Figure 1). The

moment of inertia of the solid inner core is even smaller in comparison, much less than

170 of that of the outer core. Given the accuracy level of angular momentum budget

analyses, any contributions to dh4~/dt  associated with possible fluctuations in the motion

of the inner core can be neglected. Further justification for this assumption arises from

new seismological studies (9, 10) of the relative rotation of the inner core, as well as from

rc]a(ed studies stimulated by this important new dcvclopmcnt in core dynamics (1 1–13).
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The LOD data used here arc a sell-consistent time-series resulting from the

analysis of lunar occultations prior to 1955.5. after which a combination of astronomical

and modern geodetic techniques are utilized (14). There is evidence based on solar

eclipses and other data (15) that over the past 2700 years the LOD has increased at an

average rate of at 1.70 * 0.05 mslcy.  This can be attributed to two main agencies, namely

tidal braking of the Earth’s spin (2.3 * O. 1 msfcy) and changes in the Earth’s polar

moment of inertia associated with “post-glacial rebound” (–0.6 ~ O. 1 msicy). This trend

of 1.7 mstcy was removed from the LOD series before comparing it with core angular

momentum M(l); results were shown to be insensitive to this trend. The residual found

when the trend revealed by eclipse observations has been removed from the LOD time

series shows some evidence of slow fluctuations, the detailed spectrum of which cannot

yet be determined owing to errors and sparsity in the data. At about 4 ms, the senli-

amplitude of these long-period variations is roughly the same as that of the LOD

fluctuations on much shorter decadal time scales as deduced from observatory data

obtained over the past century or so. These findings imply that

fairly flat spectrum of LOD fluctuations over time scales

centuries and longer.

Determinations of core angular momentum

core motions may excite a

ranging from decades to

Just as it is convenient to divide the atmosphere into the troposphere, stratosphere and

higher regions, and the oceans into the thcrmoc]inc  and lower regions, the liquid metallic

core can be divided into the “torosphere,” where the toroidal magnetic field is so strong

that Lorentz forces are comparable in magnitude with Coriolis  forces (f6), and the

overlying “polosphere,  ” where (he toroidal  magnetic field is typically no stronger than the

poloidal field, Lorentz forces being correspondingly much weaker than Coriolis forces

(1 7). Owing to the presence of the solid inner core, Coriolis forces inhibit flow across the

imaginary cy indrica]  surface that is tarlgcntia]  to the inner core at the cqua[or  and

5
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intcrscc[s  the outer core at Iatituks  f 66° (SCC Figure 1 ). So it is cwnvcnicnt  to sub-ciividc

the liquid core fur[hcr into “polar” regions  lying  Jvi[hin (hc [angerrt cylinder and

“ex[r:lpo]ar”  regions lying outside the cylin(lcr.  This scheme proves useful not only in

work on the dynamics of the Earth’s core (/1,  f8) but also in studies of other geophysical

and astrophysical fluids, such as the various fluid layers of Jupiter ancl Saturn and the

convective outer !ayers of the Sun. Some justification for the scheme is provided by the

laboratory experiments on thermal convection in an electrically-insulating rotating fluid

upon which the scheme was originally based (19), and further justification comes from

the flow fields produced in numerical models of buoyancy-driven MHD flows in the

Earth’s core (12, 13). In both cases motions are more vigorous in extrapolar  regions,

particularly in mid-latitudes, than they are in the comparatively quiescent polar regions.

For the purpose of the present paper, we suppose here that the Earth’s liquid

metallic outer core is bounded by concentric spherical surfaces of radii c = 3480 km and

b = 1222 km (see Figure 1) and we divide the core into Q = 20 cylindrical annuli  of equal

volume (20). The total axial angular momentum yq (t; Q) associated with relative core

motions with Eulerian flow velocity u(r, Z) = (u, v, w) at a general point P with spherical

polar coordinates (r, O,@) is given by

k/(~;Q) = ‘(C3 – //3Q
){pwrsinf?} q“ (3)

Here p = p(r, f3,@, t) is the density at P, M = w(r,O,@,I)  and the symbol {).

denotes the spatial average over the volume occupied by the q-th annulus (see Figure 1).

One of the main objectives of the present study is to determine temporal fluctuations in

Yq(I; Q) for all q using available data and to examine (he fluctuations for evidence of

torsional oscillations.

Owing to the inaccessibility of the core, direct determinations of u(r, I) and

P(~, ~~ ;Ire inlPossible  But methods  h:ive n~w been developed for  making in~iircc[
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es[imatcs of the (0, ~) components ( ~’,, M’, ) of Ii,, the Eulcrian  Ilow velocity just below the

CMB, where r~~., from gcomagnc[ic secular variation data under various gcophysical]y

plausible assumptions (2/). The data used in the present study cover the interval from

1840 to 1990 and were kindly provided by Dr. Andrew Jackson. By introducing the

additional assumption that variations in p})I in the direction parallel to the rotation axis

are negligibly small (see e.g. (ltl, 22, 23)), p}i’ can be replaced in Eq. (.?) by the known

quantity

$@,(ej (p, t) + W,(?T - e, (p, f)] .

This gives for p~(t;  Q) the approximate relationship

(4)

(5)

over the surface area of the q-th annulus,  covering the ranges O S @ S 27t and fl~.l S 8s 0~

(see 20), where ( ). signifies the spatial average. Though difficult to justify rigorously on

theoretical grounds, the additional assumption of isorotation  on co-axial cylindrical

surfaces has been discussed and used with remarkable success in important recent studies

by Jault and LeMouel and others of the angular momentum budget of the core-mantle

system (22, 23). Combining Eq. (-5) and (2) gives

as a rough  measure of the total axial angular momentum associated with relative motions

in the cm-c (cf. Eq. ()) and (22)).
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Results and discussion

The total core angular momentum M(() as well as the contributions from the individual

cylinders A~(t;20) are displ:iyed in Fig. ~(il). Here we introduce the “equivalent

millisecond unit” (emsu), defined as that amount of axial angular mon~enturn,  namely

0.60 x 10Z6 kg m2s-1, which, if transferred to the overlying solid Earth would, if the solid

Earth were perfectly rigid, reduce the length of the day (LOD) by 1 ms. Two broad

maxima occur in M(r) with the highest value attained around 1900 with “full width half

max” (FWHM) of -25 years (Fig. 2a). The second smaller maximum has its peak near

1970 with FWHM of 15 years. There is considerable range of variability of the individual

bands [Fig. 2(b)] with time-averaged total CAM ~(t) (say) being negative (–0.237

ernsu). The equatorial band (q = 20) with the largest lever arm produces the largest

contribution with time-averaged values being largely negative (i.e. y~(?; 20) =-0.4 esu).

The two large peaks are clearly seen in the equatorial annuli  (Fig. 2a); with the first peak

near 1885 corresponding to the plateau region near 1885 in the total CAM and the second

peak occurring near the 1975 maximum in total CAM. The other bands are highly

bimoda]  as well, with cylinders 16–19 having their maxima near 1885 and 1950, while

cylinders 3–1 5 have maxima near 1910 and 1970. The contribution from bands 1–3 with

a short lever arm are small with the largest contribution near 1910.

The three dimensional diagram (Fig. 3) of the contributions from the individual

cylinders (Mi) given as a function of time permits unique insight into core dynamics. The

dominant feature is a strong -65 year oscillation that is particularly evident in the

midlatitude bands (3--1 5). INote that the maxima in the midlatitude coincide in time with

the largest geomagnetic jerks events over the time period considered, namely, 1912 and

1969 (24). Variability in cylinders 1620 generally preccdcs that in the rnidlatitudes,  with

results suggestive of angular momentum propagation from the equatorial toward

mid]atitudc  region. On the basis of Figs. 1–3 and Table

8
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regions: polw (P), miclla(i[udc (ML) and equatorial (EQ). The polar region (where q = 1,

2, 3) is a natural division given the dimension of the solid inner core (Fig. 1 ), whereas the

division into rnidlalitudc  (q = 4–15) and equatorial (q = 16–20) is motivated by the

characteristic behavior of these two regions. The comparison of LOD fluctuations with

total and regional M(I) (Fig. 4) shows that the decadal LOD variability is well matched

with M(r), especially after 1870. Data prior to 1870 are not as robust as the more modern

data, with a mismatch occurring during the series between 1840–1870. The maximum

correlation between M and LOD (Table 1) is 0.58 at a lag of -17.5 yrs when the full

series (1840-1990) is considered and is 0.64 with a lag of -5 yrs with the shorter series

(1 870-1 990). The M(t) data spacing is 2.5 yrs; hence, care must be taken in the

interpretation of the lag of the latter correlation. The contribution from rnidlatitudes

(fi~~) (Fig. 3 and 4) dominates M and accounts for a major portion of the L,OD decadal

variability (56.9% for the full series and 74.9%!0  for the short series). kf~f, is in phase with

LOD, having a maximum correlation of 0.8 with the shorter series and 0.5 for the full

series (Fig. 5); secondary rnaxitna  occur at 67 and –64 years, consistent with the -65 year

periodicity,

The equatorial CAM (MEQ; cylinders 16-20) time series is bimodal, with maxima

at 1885 and 1950, and leads the h’f~f. by -20 years (Fig. 4). The correlation of kf~~ mrith

LOD has a principal maximum at a lead of -25 years with secondary maxima near 44 and

90 years, again consistent with a 65-year periodicity. It is the superposition of these two

groups of cylinders (ML and EQ) that gives rise to the broad LOD maximum near 1900.

The correlation of individual cylinders with LOD (Fig. 6) indicates that angular

momentum anomalies prop:iga[e  from the equatorial to the polar cylinders. The total

CAM (shown in red) results from the summation of the individual cylinders with a

maximum at a 15-year lead wi[h respect to LOD and secondaries at an 80-year lead and at

a 60-year lag (note the -65-year pcriodicity). The color diagram vividly displays [he -65-

ycar period wilt) 4 maxima visible two strong, two weak) and 4 minima. The strong

y
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propagation pa[[ern indicii[cs  that a period  of’ -60 years is required !or a signal to IW

[ransmittcxl  !rom the equatorial region to [he polar cylinder. Similarly. a propagation

pattern is evident in top line plots as the peaks and valleys arc traced from one cylinder to

another.

The torques responsible for angular momentum transfer between the Earth’s

atmosphere and the underlying planet are due to tractions produced by turbulent viscosity

in the oceanic and continental boundary layers and also to topographic tractions due to

normal pressure forces acting on orography. Topographic torques and boundary layer

torques produced by attnospheric motions are typically comparable in magnitude but they

have somewhat different temporal characteristics (5). Less is known about the torques at

the Earth’s core-mantle boundary (CMB), but it is generally considered that viscous

effects are probably much less important than those due to Lorentz forces associated with

electric currents in the lower reaches of the mantle, topographic torques associated with a

bumpy core mantle boundary, and gravitational effects. Uncertainties about the electrical

conductivity of the lower mantle and of the shape of the CMB and horizontal density

variations in the mantle and core make it difficult at present to establish the relative

importance of those agencies. One recent study (25) indicates that if topographic torques

are of sufficient magnitude to explain the observed decadal  LOD variations, and

dominant contributions to the torque arise in the mid-latitude. This result could bear on

our finding here that mid-latitude CAM fluctuations are in phase with fluctuations in the

motion of the mantle. In addition, recent MHD results (12, 1.3) showing robust activities

at the mid-latitudes arc consistent with this finding.

As to the roughly 65-year period seen in the angular momentum fluctuations

presented in Figures 2 and 3, the simplest but by no means the only lines along which an

interpretation might possibly be sought is to suppose that it can be identified with the

main eigenmode of torsional MHD oscillations with B[,: 2 x 10-~T (see 26), where [Jt, is

the average strength of the non-axial component of the poloidal magnetic field in the

10
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core. This is about hall ttle average slrcnglh of [hc (pc>loidat)  magnclic  field in the core

mantle, which in turn is very much lCSS than the Iikcly streng[h  (- 10-27) of the toroidal

component of the magnc[ic  field within the Earth, which is effectively confined to the

core (cf. equation (C4) of26).

For the purpose of the present paper we note that torsional oscillations about the

rotation axis (27) correspond to the case when h- = O in Eq. C4. Then, Coriolis forces and

Lorentz  forces associated with the toroidal magnetic field are both negligible in

comparison with Lorentz forces associated with the poloidal  magnetic field, and Eq. (C4)
2 2 The value of IIp is not known for the core; indeed the presentreduces to O* = V p 1 .

work might provide the best estimate of B}, at present available! IIp could be as large as

10-s T, but it might be much smaller if (as is possible but not certain) lines of force of the

poloidal part of the geomagnetic field are aligned by core motions so that they are almost

parallel to the Earth’s rotation axis nearly everywhere within the core. Taking Bp + 4 x

10-4T we find Vp+ 10-~ m s-], which is a factor of 25 smaller than V% 10-1 m s-l if (as is

likely but not certain) 11~ 10-*T (18). For length scales 2ti+c,  the period of oscillation

of the torsional mode c/VP would be about 25 years (27, 28). This is less by a factor of

about 20 than L?c2 / K*VT 2, the approximate period of any global-scale non-axisyrnetric

magnetostrophic  oscillations as given by Eq. (C4) when, for example, k = 1 # O and

V7/2GIc <<1 (18).

Such an eigenmode of MHD torsional oscillation would be readily excited by the

fluctuating background of three-dimensional flow in the core if in the power spectrum of

the fluctuation there is sufficient energy to overcome attenuation due (in this case) largely

to ohmic dissipation associated with electric currents induced in the weakly-conducting

lower mantle (29, 30). It is also possible of course that the 65-year period is not at all

associated with MHD torsional oscillations in the core, and simply reflects the time scale

of some dominunt instability or nonlinear mode interaction responsible for angular

nlomentum advcction wi[hin  the core. Beyond the scc~pe  of the present paper is any

II
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detailed discussion o! excitation and attenuation rncchanisms and the role of wdvcction

and other nonlinear processes in the dynamics of torsional oscillations. The numerical

models of core flow and the geodynarno that have been developed recently by various

groups (see e.g. 12) could be used for such purposes in future research. Indeed, a

stringent test of any such model would be its ability to simulate the geophysical

phenomena revealed by this investigation of torsional oscillations of the Earth’s core,

which is based on observations of the geomagnetic field and of fluctuations in the Earth’s

rotation.

1.

2.

3. .

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

REFERENCES

J. A. Jacobs (cd.), Geoma.gnetisrn  (4 VOIS), London: Academic Press (1987-1991).

R. Hide and J. O. Dickey, Science 253,629 (1991).

R. D. Rosen, Surveys in Geophysics, 14, 1 (1993).

T. M. Eubanks, Contributions of space geodesy to geodymmics (cd. D. E. Smith

and D. L. Turcotte) (Geodynamics  Series Vol. 24, Amer. Geophys. Un.) p. 1 (1993).

R. M. Ponte, R. D. Rosen and G. J. Boer, 1. Climare, 7,538 (1994).

J. O. Dickey, S. L. Marcus, and R. Hide, Natlire,  357,484-488, 1992.

D. Jault  and J.-L Le Moui51, Adv. Space Res., 13(1  1) 221 (1993).

D. Jault,  C. Gire and J.-L Le Motrtil, Nature 333,353 (1988).

X. Song and P. G. Richards, Narur-e, 382,221 (1996).

W.-J. SL1,  A. M. Dziewonski and R. Jeanloz, Science, 274, 1883 ( 1996).

J. M. Aurnou, D. Brito, and P. L. Olson, Gcophys. Res. Lett., 23,3401 ( 1996).

G. A. Glatzmaier and P. H. Roberts, Nature, 377, 203 (1995).

G. A. Glatzrnaier and P. H. Roberts, Science, 274, 1887 ( 1996).

C. Jordi,  L. V. h40rrison,  R. D. Rosen, D. A. Sals[ein,  and G. Rossello,  Geophys.  J.

ln~erl]., 117, 811-818 (1994).

12



,. .<

June ?7, 1[)1)7
4 ()() Phl

15. F. R. Stephenson and L. V. Morrison. Phil. Tr[ln.s. R~JJ’. S(W. A, 351, 165-202

(1995).

16. R. Hide, Geophys. Re.s.  Letr., 22, 961 ( 1995).

17. LeMoLltil, J-L., Nattire,  311,734-735 ( 1984).

18. R. Hide, Phil. Tram. RcJy. SCM-. A259, 615 ( 1966).

19. R. Hide, Ph.D. Dissertation, Cambridge University (1953).

ZO. Co-axial  cylindrical shells in the core.

To a first approximation, the liquid metallic outer core of the Earth occupies a region

bounded by concentric spherical surfaces of radii b and c, where b =’ 1222 km and

c = 3480 km. The volume and moment of inertia of the solid inner core are respectively

much less than 10-1 and 10-2 times the volume and moment of inertia of the liquid outer

core. An imaginary cylinder that is tangent to the inner sphere at the equator intersects the

outer sphere at co-latitude 0 = e* in the northern hemisphere and n – 0“ in the southern

hemisphere, where

6* = sin-] (b/c).

The co-latitude angle e“ is about 24° for the Earth (see 11, 18, 19).

It is convenient to imagine the liquid core divided into an “extrapolar”

region E where 0* <0< m--e”, and two “polar” liquid regions P where O < e < e“

Northern Hemisphere (NH) and n – El” <0< K in the Southern Hemisphere

(Al)

liquid

in the

(SH).

Consider a cylindrical shell in region E with bounding surfaces that intersect the outer

spherical surface at co-latitudes e~.l and eg in the NH (and ~ – e~.l n?z~ K - e~ in the SH)

where 8“ < ~~.l <0,, S M- (see Figure 1). The VOILIINC  V~ of this cylindrical she]] (in

region E) is given by

(A2)
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( w h i c h  fOllOWS  from the so-~iillcd “iipplc core theorcm” th:lt the volume of a spherical

apple that remains when an axisymrnetric  cylindrical core has been removed depends

only on the length of the cut (31)). The corresponding combined volumes of the two

identical cylindrical shells in polar regions P (where O < (3 < 6* and n–e” <0< n) is

given by

V, = +KC3[COS3  0,., - c d  e,] - :nb’[cos’  ~,., - cos’ ~,] . (A3)

Here ~~.l and ~~ are the co-latitudes at which the inner and outer surfaces of the

cylindrical shell intersects the surface of the inner sphere of radius b, so that

(A4)

Equations (A 1 ) to (A4) are expressions needed for the purpose of dividing up the

liquid core into Q (say) imaginary co-axial cylindrical shells of equal volume. In the case

of a full sphere (b = O) (when the P regions shrink to zero volume), the. volume of each

cylindrical shell is equal to 4Tcc~ /3Q, so that (by Eq. (A2)) we have

fI, =cos-’  (l-q/Q)’”, (AS)

whereq = 1, 2..., Q> and e~ = TC/ 2 The innermost shell>  which has ZerO inner radius~

extends from 0 = O to e = COS-l(l  – Q-’)l’~. The outermost shell extends from

e = e’)., = cm-’ Q-”3 to El = fl~ = m%?. In the case when b # O, it is necessary to use more

complicated expressions based on eqL]iltions (A3) and (A4) when ciilculating  the

latitudin:il  extent of the qth cylindrical shell.  Values of (3. in degrees are given in Table

Al.
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Table  A 1

q oq q ()’, q gq q ()’,

1 12.56 6 ~g.94 11 40.95 16 54.80

2 17.52 7 31.38 12 43.43 17 58.42

3 20.99 8 33.77 13 46.01 18 62.78

4 23.80 9 36.15 14 48.72 19 68.71

5 26.43 10 38.53 15 51.62 20 90.00

21. Determinations of core motions from geomagnetic secular variation data.

Denote by B(r,  El,$,t) the value of the main geomagnetic field at the general point P with

spherical polar coordinates (r, fl, $) and by lj - ~B / at the GSV (1). Determinations of 1?

made at and near the Earth’s surface at various epochs can be used to infer us, the

Eulerian flow velocity just below the core-mantle boundary (CMB) (see reference (32)

for review). The first of the three geophysically-reasonable  key assumptions that underlie

the method used is that the electrical conductivity of the mantle and magnetic

permeability gradients there are negligibly small, so that B satisfies V x Z1 = O as well as

V. B = O and can therefore be expressed as the gradient of a potential U satisfying

Laplace’s equation V2U = O. This facilitates the downward extrapolation of the observed

field at and near the Earth’s surface in order to obtain B and ~1 at the CMB.

The second assumption is that the electrical conductivity of the core is so high

that when dealing with fluctuations in B on time scales that are very much less than that

of the ohmic decay of magnetic fields in the core (which is several thousand years for

global-scale features) B satisfies Alfvt!n’s “frozen flux” theorem expressed by the

equation

allli.l!  = v X(U x B). (B])

15



To this approximation. the Iincs of magnetic force emerging from the core u-e

advcc ted by the horizontal flow ()’.!, tt’,, ) jus[ below the CMB. Accordingly ,  i f

B = (B,, Be, BO ), the radial component B, at the CMB satisfies

(132)

(.?3, 34).

A third assumption is needed to secure uniqueness, and one physically-plausible

possibility is that to a first approximation the flow in the upper reaches of the core—the

“polosphere” (16)— is in geostrophic balance with the pressure field there (17, 32, 35),

which can be shown to imply that

+( aw, _ ~
V, sin OCOS e)+cose —–a(j (B3)

in the case of an incompressible fluid, for which V. Z/ = O

Various groups of geomagnetic workers have produced maps of z~~ = (v., w. ) and

investigated the errors and uncertainties encountered in practice (32, 35). These

hypothetical flow fields zf~ are all similar in their general appearance but there are

discrepancies between them which remain to be resolved by future research. Most

determinations of us from GSV data make use of spherical harmonic expansions of the

variables involved. Here we follow the treatment of reference (32) where (he starting

point for the spectral expansion of u is its separation into toroidal  and poloidal

components. Thus

(B4)

16
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(where VI is [he “horizontal” gradient operator), so that

[

1 a7’ JT
t/T= ~,— ——

1sin O ~’ W ‘

[

,,=og 1 (3s———
P )‘ N)’ sin El&$ ‘

(B5)

(B6)

The potentials T and S are expanded in spherical harmonics

S(e, ())= ~sfy’f (e,@) (B8)
l,m

where the Y? are real Schmidt quasi-normalized spherical harmonics. Thus,  we can write

I(T = x f“q” , up = E Sf”$” (B9a, b)
1, nl l,m

where

q“ = V x(~’’’r), $“ = t-vl~’” (B IOa,b)

It follows from these expressions that the azimuthal component w, (6,+, t) of u,

satisfies:

(1111)

17
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from which WC arc uble to evaluate p~(t; Q) (see (Eq. 3)). When combined with Eq. (S)

and (6), this gives for M(t) the equation

(B 12)

in the absence of a solid inner core (i.e., when b = O), in agreement with an expression for

M(r) given in references (32) and (35).

22. D. Jault  and J.-L Le Moue],  J. Geomag. Geoelecr. 43, 111 (1991).

23. A. Jackson, J. Bloxham and D. Gubbins, in Dynanlics of Earth’s deep interior and

Earth rotation (cd. J.-L Le Mouel, D. E. Smylie and T. A. Herring), Geophys.

Monog. Amer. Geophys.  Un. 72,97 (1993).

24. S. R. C. Malin  and B. M. Hodder, Nature, 296, 726-72S (1982).

25. R. Hide, R. W. Clayton, B. H. Hager, M. A. Spieth and C. V. Voorhies, in Relafing

geophysical structures and processes: The Jeffreys Volume (cd. K. Aki and R.

Dmowska),  Geophys. Mono,g.  Amer. Geoph-ys.  Un., 76, 107-120(1993).

26. Magnetohydrodynamic oscillations of a rotating fluid.

General theoretical considerations indicate that the Earth’s liquid outer core can in

principle support a wide range of transverse (“shear”) oscillations at subseismic

frequencies, with periods ranging from less than a day to centuries. The restoring forces

involved are (a) gyroscopic  (Coriolis)  forces associated with the Earth’s rotation, (b)

ponderomotive  (Lorcntz) forces associated with the geomagnetic field, and (c) buoyancy

(Archimedes) forces due to the action of gravity on density inhomogeneities  in any

bottom-heavy regions, where the potential density decreases upward. Clenerated  by

internal instabilities and/or external forcing, the oscillations would be modified by

background flows and non]incar  interactions of various kinds.

18
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Coriolis  forces mndcr core motions highly anisotropic, with certain properties [bat

arc roughly independent of direction parallel to [hc rotation axis. Onc pmlicularly

important class of slow }~o)z-[lxi.~y)~zt?l[~(ri(’ oscillations, characterized by near

“rnagnetostrophic  balance” between Coriolis  and Lorentz restoring forces associated

largely with the roroidal part of the geomagnetic field, is probably manifested in the main

features of the geomagnetic secular variation (GSV) on time scales of centuries (18, 36).

The restoring forces associated with any axisymnzctric  torsional oscillations about the

rotation axis would be provided solely by Lorentz  forces associated with azimuthal

displacements of the poloidal  part of the geomagnetic field (27, 28), giving much shorter

oscillation periods, namely decades rather than centuries.

Insight into oscillations of a continuous medium can be obtained by first

considering the simplest-imaginable elementary small-amplitude plane waves in a

medium of infinite extent with uniform background properties when dissipative effects

can be neglected. For oscillations of the Earth’s core at subseismic frequencies (i.e. with

periods greater than about an hour), these are disturbances of the form cos (CM – ~ ~ r) of

an effectively incompressible inviscid liquid of zero electrical resistivity  immersed in a

steady and uniform magnetic field Ho when the whole system rotates with steady angular

velocity Q relative to an inertial frame. Here I denotes time, m the angular frequency of

the oscillation, r is the vector position of a general point P in the rotating frame with

Cartesian coordinates (x, y, z), and K = (k,l,ln)  is the vector wave number of the

oscillation. T h e  p h a s e  a n d gro Llp v e l o c i t i e s  o f the wave arc

(o!k, m/f, oYm) and (dm/;)k, &o\i31,  &oA3m) respectively.

Denote by # the constant magnetic permeability of the liquid, by ~ its mean

density, and by

(c l )

] ()
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the constant so-called “Al fvdn” velocity, aquan[ity  {>ltllrl(l:~[~lc[~t:ll  importance in Ml ID.

Denote by g the background gravitational field (including centripctal effects) and suppose

for simplicity thfit the vector

Ak(gwp,, /p) ’’’]g]g/ (C2)

is constant, where the background density is ~ + pO(r) with g x VpO = O. The magnitude

of N is the so-called Brunt-Viiistilti  frequency, which is real when the system is bottom

heavy (i.e., g” VpO > O), zero in the neutral case when (g. Vpo = O), and imaginary in the

unstable situation when the system is top-heavy (i.e. g. VpO < O). The assumption of

incompressibility effectively filters out longitudinal (compressional)  waves, leaving only

transverse (shear) waves in which particle displacements have no component parallel to

the wave fronts. The dispersion relationship between w and K is given by:

(C3)

(37), where (r); - (VK)2,  (L);= (N x K)2/K2 and co~i = (2 Q. K)2/K2, which gives o = O

(i.e., no tranverse waves) when (OV = (1)~ = (I)Cl = O.

Geophysical fluid dynamicists  are concerned with a rich variety of waves

corresponding to various limiting cases of Eq. (C3). Thus, when 2Cl # O but N = V = O

we have the elementary pure “(elastoid) inertial” waves (38); when N # O but V = 2fll = O,

we have “internal (gravity)” waves (39); and when V # O but 2C2 = N = O, we have the

“MHD (Alfv6n)”  waves (40). Certain classes of hybrid waves arise not only when

2f2 # O, N # O, V # O (37), but also when 2Q # O and N # O but V = O, the case of

“inertia-gravity” waves (38); when h’ # O :ind V # O but 2Q = O, the case of “MHD -

gravity” waves: and when V # O and 2L? if O but N = O, the case of “MHD-inertial” Wfaves

(41). And in the case of a semi-inllnitc rather than an infinite medium many types of edge

waves arc also possible, for imaginary components of k- normal to the boundary c)f [he
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medium then become admissible. These edge waves include the well-known Kelvin

waves (.?9) which, with the related inertia-gravity waves. are important in dynamical

oceanography and meteorology. as well M ccr~ain  MHD edge waves (42) that are

possible in rotating stratified fluids when V #O, 2K) # O and N = O.

Further insight into the processes involved is derivable from studies of the

dispersion relationships and other properties of plane waves, such as particle trajectories,

polarization, etc., but complications arise when dealing with actual geophysical systems.

The finite dimensions of the fluid medium have to be taken into account in cases when

they cannot

oscillation.

relationship

be treated as large in comparison with the scales of the eigenmodes of

Thus, related to the “MHD-inertial” plane waves whose dispersion

s given by Eq. (3) with N = O are the so-called “MHD-planetary” waves (18,

43, 44, 45) with properties affected by the presence of (nearly) spherical boundaries, as in

the case of the Earth’s core. An approximate dispersion relationship for such waves is

given by

U2 +akaY(k2  +12) –(V~k+ VPI)2 = O (C4)

(18), where VT= IIr /(p~)l’2and VP -BP /(y~)l’2 if B~ is a measure of the strength of

the azimuthal (toroidal) magnetic field in the core and IIp that of the strength of the non-

axial component of the meridional (poloidal) field, and k and 1 are the east-west and

south-north wave numbers. For disturbances that are largely confinecl  to the “polar”

regions (see Figure 1 ) where the latitude exceeds 66° (at which the cylinder tangent at the

equator to the outer boundary of the solid inner core meets the outer boundary of the

liquid core), the quantity cx~ 2CYC where c is the outer radius of the liquid cm-e and C? is

the basic angular speed of rotation of the sys[cm. On the other hand, for clisturbances  that

are largely confined to the “ex[rapolar” rcg, ions which occupy more than 90% of the

whole core, the quantity a + – WC (4).
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Legends for Diagrams and Tahlcs

Figure  1. Illustrating the division of the Earth’s liquid outer core into Q = 20 annular

regions of equal volume numbered q = O, 1, 2, 3...20 and bounded on the equatorward

side by the co-latitude (1 ~ in the Northern Hemisphere and n – Oq in the Southern

Hemisphere, where values of e, are shown in Table A 1, see (20).

Figure 2. (a) Temporal fluctuations in p~(r;  Q), q = O, 1, 2, 3... Q = 20, the angular

momentum of each annul us, from 1840 to 1990 (thin lines) and of M(t), the total angular

momentum (thick line) (see Eq. 5 and 6 and Figure 2(b)); (b) The dependence on q of the

temporal mean value of p~ (t; Q), the core angular momentum, from 1840 to 1980 (thick

broken line) and of the range of temporal fluctuations (thin broken lines).

Figure 3. Three-dimensional representation of core angular momentum of 20 co-axial

equi-volume  cylindrical shells as a function of cylinder number and time (Hovmoller

diagram). Note the dominant -65-year fluctuation and its latitude dependence.

Figure 4. Comparison of length of day (LOD) and core angular momentum (CAM). A

slope of 1.7 ms/centu~ has been removed from the LOD data to allow for the effects of

post-glacial rebound and the secular acceleration of the moon and a 10-year smoothed

series are shown from each of the series. The total CAM (M) is shown as well as three

regions (cylinders 1–3, 4--15, 16–20).  Note the large correlation between LOD and

mid]atitude  region (belts 4–15).

Figure 5. The correlation of grouped cylinders ( 1-3, 4-15, 16–20) of CAM with LOD as

a function of l:ig of the CAM with respect to the LOD. The top curve (a) is based on the
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full series ( 1840-

where the correlati

990), and (he bottom curve (b) on the shorter series ( 1867.5-1990)

)n is higher.

Figure 6. Correlation of LOD (length of day) with the CAM (core angular momentum) as

a function of the lag of the CAM with respect to the length of day. The effect of the

individual bands are shown in black and by the color graphics; the total CAM effect is

depicted by the red line.

Table 1. Statistical data relating to Figure 3.

Table Al. Values of em, in degrees, where m = O, 1, 2, 3..., n (= 20), based on equations

(A3)-(A5)  (see 20).
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~Ah4f/cANITc)TAI. CAMi/LOD

Correlation Max Lag (years) % Variance Corrc]at ion Maximum Lag (years) 70 variance
Belts Lag = O Corrclat  ion at max Explained 1 .:ig = o Corrclat  ion at max Explained

Correlation Correlation

1 .16 .33 15 .2 .20 .22 -2.5 .4

2 .32 .48 12.5 1.6 .32 .36 -2.5 2.5

3 .48 .61 7.5 2.8 .42 .44 -2.5 3.9

4 .62 .74 7.5 3.8 .50 .52 -2.5 5.0

5 .73 .83 7.5 4.8 .55 .58 -2.5 5.8

6 .79 .86 5 5.6 .56 .58 -2.5 6.4

7 .81 .86 5 6.3 .54 .56 -2.5 6.7

8 .81 .83 2.5 6.7 .51 .53 -2.5 6.8

9 .80 .81 2.5 7.0 .47 .49 -2.5 6.6

10 .79 .79 2.5 7.0 .42 .45 -2.5 6.0

11 .78 .78 0 6.8 .38 .41 -5 5.2

12 .79 .79 0 6.4 .32 .40 -10 4.2

13 .81 .81 0 5.9 .25 .41 -12.5 2.9

14 .84 .84 0 5.2 .16 .48 -20 1.4

15 .81 .81 0 4.4 -.02 .61 -20 -.2

16 .66 .66 0 3.7 -.21 .67 -22.5 -1.9

17 .46 .56 -15 3.2 -.33 .66 -25 -3.6

18 .36 .58 -15 3.2 -.37 .65 -25 -5.2

19 .39 .62 -15 4.3 -.36 .67 -25 -6.3

20 .59 .69 -7.5 11.28 -.17 .64 -22.5 -5.4

1-3 .38 .53 10 4.6 .36 .38 -2.5 6.9 I

4-15 .88 .88 2.5 69.8 .47 .49 -7.5 56.9

16-20 .56 .69 -7.5 25.6 -.31 .74 -25 -22.5

Total 1.0 1.0 0 100 ,26 .58 -17.5 41.3
1-20

Full CAM Series
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cAMi/cAM1~TAl CAMi/LOD

Corrc]at ion Max Lag (yxirs) % Variance Corrclalion Maximum
Lag = o Corrclat  ion al mm Exp]ainccl lag = o Corrclat  ion

Corre]at ion

.46 .74 17.5 .8 .27 .35

.57 .80 15 3.9 .40 .43

.65 .84 12.5 5.3 .51 .52

.71 .87 7.5 6.1 .61 .61

.75 .89 7.5 6.5 .69 .69

.75 .86 7.5 6.6 .75 .75

.72 .79 5 6.5 .77 .77

.68 .72 5 6.2 .77 .77

.63 .65 2.5 5.7 .75 .75

.58 .59 2.5 5.2 .72 .72

.55 .55 0.0 4.5 .70 .70

.55 .55 0.0 3.9 .68 .68

.58 .58 0.0 3.2 .66 .66

.64 .64 0.0 2.7 .57 .58

.57 .57 0.0 2.3 .25 .52

.38 .54 -15. 2.2 -.08 .51

.30 .59 -15. 2.7 -.22 .56

.33 ..65 -15. 3.9 -.27 .61

.43 .75 -15. 6.6 -.27 .67

.58 .76 -7.5 15.2 -.12 .57

.60 .81 15 10.0 .44 .46

.76 .78 2.5 59.4 .80 .80

.51 .77 -15 30.6 -.21 .67

1.0 1.0 0. 100 .57 .64

Shorter CAM Series

Lag (years)
at max

Correlation

% variance
ExplainedBelts

1 -7.5

-2.5

-2.5

0.0

0.0

0.0

.6

3.2

5.0

6.3

7.2

7.9

-1
L

3

4

5

6

0.0 8.37

8 0.0
0.0

8.4

8.29

0.0 7.610
11 0.0

0.0
0.0

6.8

12 5.7

4.413

-2.5 2.914

15 -1o.
-20.

1.2

-.616

17

18

19

20

1-3

4-15

16-20

Total
1-20

-20. -2.3

-22.5 -3.8

-22.5 -4.9

-22.5

-2.5

-3.7

8.8

0.0 74.9

-22.5

-5

-15.3

68.4
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